Solution for Problems 31-60

31. Answer: $\frac{11 \pi}{6}$ The radian measure for 330° is gotten by multiplying by $\frac{\pi}{180}$.

$$
330\left(\frac{\pi}{180}\right)=\frac{11 \pi}{6} \text { which we get by dividing } 330 \text { and } 180 \text { by } 30 .
$$

32. Answer: $\sin \pi=0 \quad \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \quad \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}, \quad \sin \frac{\pi}{6}=\frac{1}{2} \quad$ and $\sin \pi=0$.

So the smallest number is $\sin \pi=0$.
33. Answer: 7.8 Since $\sin B=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{5}{A B}=0.64$, we get $A B=\frac{5}{0.64}=7.8$ to the nearest tenth.
34. Answer: $-\frac{2}{\sqrt{3}} \quad$ or $-\frac{2 \sqrt{3}}{3} \quad \csc \left(\frac{4 \pi}{3}\right)=\frac{1}{\sin \left(\frac{4 \pi}{3}\right)}$.

Since $\frac{4 \pi}{3}$ is in quadrant III, the sign of $\sin \frac{4 \pi}{3}$ is negative and equal to $-\frac{\sqrt{3}}{2}$.
So $\csc \left(\frac{4 \pi}{3}\right)=\frac{1}{\sin \left(\frac{4 \pi}{3}\right)}=-\left(\frac{1}{\frac{\sqrt{3}}{2}}\right)=-\frac{2}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3}$.
35. Answer: $\sin \theta$.

The trigonometric identity for the expansion of $\sin (a-b)=\sin a \cos b-\sin b \cos a$

So that $\sin \left(180^{\circ}-\theta\right)=\sin 180^{\circ} \cos \theta-\sin \theta \cos 180^{\circ}$.
Using $\sin \left(180^{\circ}\right)=0$ and $\cos \left(180^{\circ}\right)=-1$, we simplify

$$
\sin \left(180^{\circ}-\theta\right)=0(\cos \theta)-\sin \theta(-1)=\sin \theta
$$

36. Answer: 1

The Pythagorean Identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ applies for any angle.
37. Answer: $\tan B=\frac{x}{\sqrt{4-x^{2}}}$

The hypotenuse $A B$ is given as 2 , the side $A C$ is given as x so the third side BC is $\sqrt{4-x^{2}}$ by using the Pythagorean Theorem.

$$
x^{2}+(B C)^{2}=2^{2}, \quad \text { so that } \quad(B C)^{2}=4-x^{2}, \quad B C=\sqrt{4-x^{2}}
$$

Now the $\tan B=\frac{\text { opposite }}{\text { adjacent }}=\frac{A C}{B C}=\frac{x}{\sqrt{4-x^{2}}}$.
38. Answer: $\sin 2 \theta=2 \sin \theta \cos \theta$ and $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$

Since $\sin (a+b)=\sin a \cos b+\cos a \sin b$ and $\cos (a+b)=\cos a \cos b-\sin a \sin b$, by letting $a=b=\theta$, we get
$\sin (\theta+\theta)=\sin 2 \theta=\sin \theta \cos \theta+\cos \theta \sin \theta=2 \sin \theta \cos \theta$.
$\cos (\theta+\theta)=\cos 2 \theta=\cos \theta(\cos \theta)-\sin \theta(\sin \theta)=\cos ^{2} \theta-\sin ^{2} \theta$.
39. Answer: $\theta=30^{\circ}, 90^{\circ}, 150^{\circ}$.

Factor: $2 \sin ^{2} \theta+\sin \theta-1=0$ to get $(2 \sin \theta-1)(\sin \theta+1)=0$
$2 \sin \theta-1=0$ and $\sin \theta+1=0$
$\sin \theta=\frac{1}{2} \quad$ and $\quad \sin \theta=-1$

For $\sin \theta=\frac{1}{2}$, there are two solutions in the interval $0 \leq \theta<2 \pi$, one in quadrant I and one in quadrant II.
$\theta=30^{\circ}$ and $\theta=150^{\circ}$
For $\sin \theta=-1$, there is one solution, $\theta=270^{\circ}$.
40. Answer: $\quad \theta=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$.

For $\cos 4 \theta=1,4 \theta=0+2 n \pi \quad$ for integers n or $\theta=\frac{2 n \pi}{4}=\frac{n \pi}{2}$.
Letting n range from 0,1,2,3 we get four answers in the required domain of $0 \leq \theta<2 \pi$.
When $n=4, \frac{4 \pi}{2}=2 \pi>2 \pi$.
41. Answer: $\frac{2 \pi}{3}$ For $y=A \sin (B x+C)$ the period is $\frac{2 \pi}{B}$.

Thus the period is $\frac{2 \pi}{3}$
42. Answer: $\arccos \mathrm{A}=\frac{11}{16}$.

Using the Law of Cosines with $\mathrm{AC}=b=4, \mathrm{BC}=a=6$, and $\mathrm{AB}=c=8$,

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \mathrm{~A}
$$

$$
\text { becomes } 6^{2}=4^{2}+8^{2}-2(4)(8) \cos A
$$

$$
36=16+64-64 \cos A
$$

$$
36-80=-64 \cos A
$$

$$
-44=-64 \cos A
$$

$$
\cos \mathrm{A}=\frac{11}{16}
$$

$$
\mathrm{A}=\arccos \left(\frac{11}{16}\right)
$$

43. Answer: π
$\arcsin \left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$, so that $\quad 4 \arcsin \left(\frac{1}{\sqrt{2}}\right)=4\left(\frac{\pi}{4}\right)=\pi$.
The $\arcsin x$ is the angle θ whose sine is $x ; \sin \theta=x$ where $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$
44. Answer : $\cot \theta$

Using the relations that $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\sec \theta=\frac{1}{\cos \theta}$,
we conclude that

$$
\cos ^{2} \theta(\tan \theta)\left(\csc ^{2} \theta\right)=\cos ^{2} \theta\left(\frac{\sin \theta}{\cos \theta}\right)\left(\frac{1}{\sin ^{2} \theta}\right)=\frac{\cos \theta}{\sin \theta}=\cot \theta
$$

45. Answer: 4

For $f(x)=-x^{2}+5$,
$f(1)=-1^{2}+5=-1+5=4$. Think of $-\mathbf{1}^{2}$ as $\mathbf{- 1}(1)^{2}$.
Remember the order of operations require that we square $\mathbf{1}$ first and then multiply by -1 .
46. Answer: $\frac{3}{5}$ Solving for y we get $y=\frac{3}{5} x-\frac{1}{5}$, so the slope is the coefficient of x, which is $\frac{3}{5}$.
47. Answer: $y=-\frac{3}{4} x-\frac{7}{4}$

The point slope formula for a line passing through the point $\left(x_{0}, y_{0}\right)$
with slope \boldsymbol{m} is $y-y_{0}=\boldsymbol{m}\left(x-x_{0}\right)$
For our problem $\left(x_{0}, y_{0}\right)=(3-4)$ and $m=-\frac{3}{4}$.
$y-y_{0}=\boldsymbol{m}\left(x-x_{0}\right)$
Thus substituting for x_{0}, y_{0}, m we get
$y-(-4)=-\frac{3}{4}(x-3)$
$y+4=-\frac{3}{4} x-\frac{3}{4}(-3)$
$y+4=-\frac{3}{4} x+\frac{9}{4}$
$y=-\frac{3}{4} x+\frac{9}{4}-4$
$y=-\frac{3}{4} x+\frac{9-16}{4}$

$$
y=-\frac{3}{4} x-\frac{7}{4}
$$

48. Answer: $3 \sqrt{10}$ The length of the top (and bottom) is $10-7=3$ and the length of the sides is $7-(-2)=7+2=9$. Since the angles of a rectangle are right angles the diagonal, and the adjacent sides form a right triangle with the diagonal as the hypotenuse.

The diagonal, \boldsymbol{d}, and the sides satisfy the Pythagorean Theorem.

$$
\begin{aligned}
& d^{2}=3^{2}+9^{2}=9+81=90 \\
& d=\sqrt{90}=\sqrt{9(10)}=\sqrt{9} \sqrt{10}=3 \sqrt{10}
\end{aligned}
$$

49. Answer: $2 x+a$.

$$
\text { If } f(x)=x^{2}
$$

$$
\frac{f(x+a)-f(x)}{a}=\frac{(x+a)^{2}-x^{2}}{a}=\frac{x^{2}+2 a x+a^{2}-x^{2}}{a}
$$

$$
\frac{2 a x+a^{2}}{a}=\frac{a(2 x+a)}{a}=2 x+a
$$

50. Answer:

$|x|$ is defined as x for $x \geq 0$ which is the right hand line in the first diagram and as $-x$ for $x<0$ which is the left hand line in the first diagram.

In general the graph of $f(x-c)$ shifts the graph of $f(x), c$ units along the x-axis.

Thus $|x-1|$ shifts the graph one unit to the left since $x+1=x-(-1)$ where $c=-1$. In a similar way $|x-1|$ shifts the original graph one unit to the right.
51. Answer: $y=\ln x+2$

For $x=e^{y-2}$, take the natural logarithm of both sides to get
$\ln x=y-2$,
$y=\ln x+2$.
52. Answer: $x=8$

The axis of symmetry of a parabola of the form $y=a x^{2}+b x+c$, is $x=-\frac{b}{2 a}$.
Thus $x=-\frac{(16)}{2(-1)}=8$
53. Answer: $f(g(x))=9 x+1 ; \quad g(f(x))=\sqrt{9 x^{2}+1}$

$$
f(g(x))=f(\sqrt{x})=9(\sqrt{x})^{2}+1=9 x+1
$$

$f(g(x))=f(\sqrt{x})=9(\sqrt{x})^{2}+1=9 x+1$
Also $g(f(x))=\sqrt{9 x^{2}+1}$. Note $\sqrt{9 x^{2}+1} \neq 3 x+1$
because the radical does not distribute over addition.
54. Answer: $x=1$
$\frac{2 x-1}{x^{2}}=1 \quad$ becomes, after multiplying by x^{2},
$2 x-1=x^{2}$
Moving all the terms to one side:

$$
\begin{aligned}
& x^{2}-2 x+1=0 \\
& (x-1)^{2}=0 \\
& x=1
\end{aligned}
$$

55. Answer: Domain $x \geq 4$ or $x \leq-4$, Range $y \geq 0$

Since the expression under the radical sign must be non-negative we have
$x^{2}-16 \geq 0$
$x^{2} \geq 16$
$\sqrt{x^{2}} \geq \sqrt{16}$
$|x| \geq 4$
$x \geq 4 \quad$ or $\quad x \leq-4$
56. Answer: $x=\frac{1}{2}, \quad x=-3$

To find the points of intersection of two curves set the y values equal to each other.

$$
\begin{array}{ll}
2 x^{2}=3-5 x & \\
2 x^{2}+5 x-3=0 & \\
(2 x-1)(x+3)=0 & \\
2 x-1=0 & x+3=0 \\
2 x=1 & x=-3 \\
x=\frac{1}{2} &
\end{array}
$$

57. Answer: - 4

Rewrite $\log _{2}\left(\frac{1}{16}\right)=\log _{2}\left(\frac{1}{2^{4}}\right)=\log _{2}\left(2^{-4}\right)=-4$
58. Answer: $\frac{1}{2} \ln \left(x^{2}+1\right)-\ln x$

The log rules for division and power are $\ln \left(\frac{a}{b}\right)=\ln a-\ln b$ and $\ln \left(a^{p}\right)=p \ln a$
we have $\ln \left(\frac{\sqrt{x^{2}+1}}{x}\right)=\ln \left(\sqrt{x^{2}+1}\right)-\ln x=\ln \left(x^{2}+1\right)^{\frac{1}{2}}-\ln x=\frac{1}{2} \ln \left(x^{2}+1\right)-\ln x$.
59. Answer: 3 real roots, $0,-4,4$

$$
\begin{array}{ll}
x\left(x^{2}-16\right)\left(x^{2}+16\right)=0 & \\
x=0, & x^{2}-16=0, \\
& x^{2}+16=0 \\
& (x-4)(x+4)=0 \\
x=4, x=-4 & x^{2}=-16 \\
x & \text { no real solutions }
\end{array}
$$

60. Answer: Domain $x>0$, Range $-\infty<x<\infty, x$ - intercept is 1 . As $x \rightarrow \infty, \ln x \rightarrow \infty$, and as $x \rightarrow 0^{+}, \ln x \rightarrow-\infty$.

