Solution for Problems 31-60

31. Answer: $\frac{11\pi}{6}$ The radian measure for 330° is gotten by multiplying by $\frac{\pi}{180}$. $330\left(\frac{\pi}{180}\right) = \frac{11\pi}{6}$ which we get by dividing 330 and 180 by 30.

- 32. Answer: $\sin \pi = 0$ $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$, $\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$, $\sin \frac{\pi}{6} = \frac{1}{2}$ and $\sin \pi = 0$. So the smallest number is $\sin \pi = 0$.
- 33. Answer: 7.8 Since $\sin B = \frac{opposite}{hypotenuse} = \frac{5}{AB} = 0.64$, we get $AB = \frac{5}{0.64} = 7.8$ to the nearest tenth.

34. Answer:
$$-\frac{2}{\sqrt{3}}$$
 or $-\frac{2\sqrt{3}}{3}$ $\csc\left(\frac{4\pi}{3}\right) = \frac{1}{\sin\left(\frac{4\pi}{3}\right)}$.
Since $\frac{4\pi}{3}$ is in quadrant III, the sign of $\sin\frac{4\pi}{3}$ is negative and equal to $-\frac{\sqrt{3}}{2}$
So $\csc\left(\frac{4\pi}{3}\right) = \frac{1}{\sin\left(\frac{4\pi}{3}\right)} = -\left(\frac{1}{\frac{\sqrt{3}}{2}}\right) = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$.

35. Answer: $\sin \theta$.

The trigonometric identity for the expansion of sin(a - b) = sinacosb - sinbcosa

So that $\sin(180^\circ - \theta) = \sin 180^\circ \cos \theta - \sin \theta \cos 180^\circ$.

Using $sin(180^\circ) = 0$ and $cos(180^\circ) = -1$, we simplify

 $\sin(180^{\circ} - \theta) = 0(\cos\theta) - \sin\theta(-1) = \sin\theta$

36. Answer: 1

The Pythagorean Identity $\sin^2 \theta + \cos^2 \theta = 1$ applies for any angle.

37. Answer:
$$\tan B = \frac{x}{\sqrt{4-x^2}}$$

The hypotenuse AB is given as 2, the side AC is given as x so the third side BC is

 $\sqrt{4-x^2}$ by using the Pythagorean Theorem.

$$x^{2} + (BC)^{2} = 2^{2}$$
, so that $(BC)^{2} = 4 - x^{2}$, $BC = \sqrt{4 - x^{2}}$

Now the $\tan B = \frac{opposite}{adjacent} = \frac{AC}{BC} = \frac{x}{\sqrt{4-x^2}}$.

38. Answer: $\sin 2\theta = 2\sin\theta\cos\theta$ and $\cos 2\theta = \cos^2\theta - \sin^2\theta$

Since $\sin(a + b) = \sin a \cos b + \cos a \sin b$ and $\cos(a + b) = \cos a \cos b - \sin a \sin b$, by letting $a = b = \theta$, we get $\sin(\theta + \theta) = \sin 2\theta = \sin \theta \cos \theta + \cos \theta \sin \theta = 2\sin \theta \cos \theta$ $\cos(\theta + \theta) = \cos 2\theta = \cos \theta (\cos \theta) - \sin \theta (\sin \theta) = \cos^2 \theta - \sin^2 \theta$.

39. Answer: $\theta = 30^{\circ}$, 90° , 150° .

Factor: $2\sin^2\theta + \sin\theta - 1 = 0$ to get $(2\sin\theta - 1)(\sin\theta + 1) = 0$

 $2\sin\theta - 1 = 0$ and $\sin\theta + 1 = 0$ $\sin\theta = \frac{1}{2}$ and $\sin\theta = -1$

For $\sin \theta = \frac{1}{2}$, there are two solutions in the interval $0 \le \theta < 2\pi$, one in quadrant I and one in quadrant II. $\theta = 30^{\circ}$ and $\theta = 150^{\circ}$

For $\sin \theta = -1$, there is one solution, $\theta = 270^{\circ}$.

40. Answer: $\theta = 0$, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$. For $\cos 4\theta = 1$, $4\theta = 0 + 2n\pi$ for integers *n* or $\theta = \frac{2n\pi}{4} = \frac{n\pi}{2}$. Letting *n* range from 0,1,2,3 we get four answers in the required domain of $0 \le \theta < 2\pi$. When n = 4, $\frac{4\pi}{2} = 2\pi > 2\pi$. 41. Answer: $\frac{2\pi}{3}$ For $y = \operatorname{Asin}(Bx + C)$ the period is $\frac{2\pi}{B}$.

Thus the period is $\frac{2\pi}{3}$

42. Answer: $arccosA = \frac{11}{16}$.

Using the Law of Cosines with AC = b = 4, BC = a = 6, and AB = c = 8,

 $a^2 = b^2 + c^2 - 2bc \cos A$

becomes
$$6^2 = 4^2 + 8^2 - 2(4)(8)\cos A$$

 $36 = 16 + 64 - 64\cos A$
 $36 - 80 = -64\cos A$
 $-44 = -64\cos A$
 $\cos A = \frac{11}{16}$
 $A = \arccos\left(\frac{11}{16}\right)$

43. Answer: π

$$\arcsin\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$$
, so that $4\arcsin\left(\frac{1}{\sqrt{2}}\right) = 4\left(\frac{\pi}{4}\right) = \pi$.

The *arc*sinx is the angle θ whose sine is x; $\sin \theta = x$ where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

44. Answer : $\cot \theta$

Using the relations that
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 and $\sec \theta = \frac{1}{\cos \theta}$,

we conclude that

$$\cos^2\theta(\tan\theta)(\csc^2\theta) = \cos^2\theta\left(\frac{\sin\theta}{\cos\theta}\right)\left(\frac{1}{\sin^2\theta}\right) = \frac{\cos\theta}{\sin\theta} = \cot\theta$$

45. Answer: 4

For $f(x) = -x^2 + 5$, $f(1) = -1^2 + 5 = -1 + 5 = 4$. Think of -1^2 as $-1(1)^2$. Remember the order of operations require that we square 1 first and then multiply by -1.

46. Answer:
$$\frac{3}{5}$$
 Solving for y we get $y = \frac{3}{5}x - \frac{1}{5}$, so the slope is the coefficient of x, which is $\frac{3}{5}$.

47. Answer: $y = -\frac{3}{4}x - \frac{7}{4}$

The point slope formula for a line passing through the point (x_0 , y_0)

with slope
$$\boldsymbol{m}$$
 is $y - y_0 = \boldsymbol{m}(x - x_0)$
For our problem $(x_0, y_0) = (3 - 4)$ and $\boldsymbol{m} = -\frac{3}{4}$.
 $y - y_0 = \boldsymbol{m}(x - x_0)$

Thus substituting for x_0, y_0, m we get

$$y - (-4) = -\frac{3}{4}(x - 3)$$
$$y + 4 = -\frac{3}{4}x - \frac{3}{4}(-3)$$
$$y + 4 = -\frac{3}{4}x + \frac{9}{4}$$
$$y = -\frac{3}{4}x + \frac{9}{4} - 4$$
$$y = -\frac{3}{4}x + \frac{9 - 16}{4}$$

$$y = -\frac{3}{4}x - \frac{7}{4}$$

48. Answer: $3\sqrt{10}$ The length of the top (and bottom) is 10 - 7 = 3 and the length of the sides is 7 - (-2) = 7 + 2 = 9. Since the angles of a rectangle are right angles the diagonal, and the adjacent sides form a right triangle with the diagonal as the hypotenuse.

The diagonal, d, and the sides satisfy the Pythagorean Theorem.

$$d^{2} = 3^{2} + 9^{2} = 9 + 81 = 90$$
$$d = \sqrt{90} = \sqrt{9(10)} = \sqrt{9}\sqrt{10} = 3\sqrt{10}$$

49. Answer: 2x + a. If $f(x) = x^2$

$$\frac{f(x+a) - f(x)}{a} = \frac{(x+a)^2 - x^2}{a} = \frac{x^2 + 2ax + a^2 - x^2}{a}$$

$$\frac{2ax+a^2}{a} = \frac{a(2x+a)}{a} = 2x+a$$

|x| is defined as x for $x \ge 0$ which is the right hand line in the first diagram and as -x for x < 0 which is the left hand line in the first diagram.

In general the graph of f(x - c) shifts the graph of f(x), c units along the x-axis.

Thus |x - 1| shifts the graph one unit to the left since x + 1 = x - (-1) where c = -1. In a similar way |x - 1| shifts the original graph one unit to the right.

51. Answer: y = lnx + 2

For $x = e^{y^{-2}}$, take the natural logarithm of both sides to get lnx = y - 2, y = lnx + 2.

52. Answer: x = 8

The axis of symmetry of a parabola of the form $y = ax^2 + bx + c$, is $x = -\frac{b}{2a}$.

Thus
$$x = -\frac{(16)}{2(-1)} = 8$$

53. Answer: f(g(x)) = 9x + 1; $g(f(x)) = \sqrt{9x^2 + 1}$

$$f(g(x)) = f(\sqrt{x}) = 9(\sqrt{x})^2 + 1 = 9x + 1$$

$$f(g(x)) = f(\sqrt{x}) = 9(\sqrt{x})^2 + 1 = 9x + 1$$

Also $g(f(x)) = \sqrt{9x^2 + 1}$. Note $\sqrt{9x^2 + 1} \neq 3x + 1$ because the radical does not distribute over addition.

54. Answer: x = 1

$$\frac{2x-1}{x^2} = 1$$
 becomes, after multiplying by x^2 ,

$$2x - 1 = x^2$$

Moving all the terms to one side:

$$x^{2} - 2x + 1 = 0$$
$$(x - 1)^{2} = 0$$
$$x = 1$$

55. Answer: Domain $x \ge 4$ or $x \le -4$, Range $y \ge 0$

Since the expression under the radical sign must be non-negative we have

 $x^{2} - 16 \ge 0$ $x^{2} \ge 16$ $\sqrt{x^{2}} \ge \sqrt{16}$ $|x| \ge 4$ $x \ge 4 \quad \text{or} \quad x \le -4$

56. Answer: $x = \frac{1}{2}$, x = -3

To find the points of intersection of two curves set the y values equal to each other.

$$2x^{2} = 3 - 5x$$

$$2x^{2} + 5x - 3 = 0$$

$$(2x - 1)(x + 3) = 0$$

$$2x - 1 = 0$$

$$x + 3 = 0$$

$$2x = 1$$

$$x = -3$$

$$x = \frac{1}{2}$$

57. Answer: -4

Rewrite
$$\log_2\left(\frac{1}{16}\right) = \log_2\left(\frac{1}{2^4}\right) = \log_2(2^{-4}) = -4$$

58. Answer: $\frac{1}{2}\ln(x^2+1) - \ln x$

The log rules for division and power are $\ln\left(\frac{a}{b}\right) = \ln a - \ln b$ and $\ln(a^p) = p \ln a$ we have $\ln\left(\frac{\sqrt{x^2 + 1}}{x}\right) = \ln\left(\sqrt{x^2 + 1}\right) - \ln x = \ln\left(x^2 + 1\right)^{\frac{1}{2}} - \ln x = \frac{1}{2}\ln(x^2 + 1) - \ln x$. 59. Answer: 3 real roots, 0, -4, 4

$$x(x^{2} - 16)(x^{2} + 16) = 0$$

$$x = 0, \quad x^{2} - 16 = 0, \quad x^{2} + 16 = 0$$

$$(x - 4)(x + 4) = 0 \quad x^{2} = -16$$

$$x = 4, \ x = -4 \quad \text{no real solutions}$$

60. Answer: Domain x > 0, Range $-\infty < x < \infty$, x – intercept is 1. As $x \to \infty$, $\ln x \to \infty$, and as $x \to 0^+$, $\ln x \to -\infty$.

