Review for the Precalculus Placement Test

31. Find the radian measure of an angle whose degree measurement is 330°.
32. Which of the following numbers is the smallest?
$\sin \frac{\pi}{3}$
$\sin \frac{\pi}{4}$
$\sin \frac{\pi}{6}$
$\sin \pi$
33. In a right triangle ABC , angle C is the right angle, side $\mathrm{AC}=5$
and $\sin B=0.64$. Find the length of side AB to the nearest tenth.

34. Evaluate $\csc \left(\frac{4 \pi}{3}\right)$.
35. Simplify $\sin \left(180^{\circ}-\theta\right)$ in terms of $\sin \theta$ or $\cos \theta$.
36. Evaluate $\sin ^{2}(4 \theta)+\cos ^{2}(4 \theta)$ for all θ.
37. In a right triangle ABC , angle C is the right angle. If side $\mathrm{AB}=2$ and $\mathrm{AC}=x$, find an expression for tan B.

38. Rewrite the trigonometric identity for $\sin 2 \theta$ and $\cos 2 \theta$ in terms of the angle θ.
39. Final all solutions of x in the interval $0^{\circ} \leq \theta<360^{\circ}$ satisfying the equation

$$
2 \sin ^{2} \theta+\sin ^{2} \theta-1=0
$$

40. For what values of θ in the interval $0 \leq \theta<2 \pi$ is $\cos 4 \theta=1$.
41. What is the period of $y=4 \sin 3 \theta$.
42. Use the law of cosines given below to find an expression for angle A in triangle

ABC if $\mathrm{AB}=8, \mathrm{AC}=4$, and $\mathrm{BC}=6$.
Law of cosines: $a^{2}=b^{2}+c^{2}-2 b c \cos A$.

43. Evaluate $4 \operatorname{Arcsin}\left(\frac{1}{\sqrt{2}}\right)$.
44. Simplify: $\cos ^{2} \theta(\tan \theta)\left(\csc ^{2} \theta\right)$
45. Let $f(x)=-x^{2}+5$. Evaluate $f(1)$.
46. Find the slope of the line $3 x-5 y=1$.
47. Write the equation of the line passing through the point $(3,-4)$ having

$$
\text { slope }-\frac{3}{4}
$$

48. A rectangle has vertices (7, 7), (10,7), (7, -2) and ($10,-2$). Find the length of the diagonal.

49. If $f(x)=x^{2}$, simplify $\frac{f(x+a)-f(x)}{a}$
50. Graph $|x|$ and $|x+1|$ and $|x-1|$
51. If $x=e^{y-2}$. Solve for y in terms of x
52. The graph of the parabola $y=-x^{2}+16 x+1$ is symmetric with respect to what line?
53. If $f(x)=9 x^{2}+1$ and \sqrt{x}. Find $f(g(x))$ and $g(f(x))$. Simplify if possible.
54. If $f(x)=\frac{2 x-1}{x^{2}}$. For which value(s) of x is $f(x)=1$?
55. Find the domain and range of $y=\sqrt{x^{2}-16}$.
56. Find the points of intersection of the graphs $y=2 x^{2}$ and $y=3-5 x$.
57. Simplify $\log _{2}\left(\frac{1}{16}\right)$.
58. Use log rules to simplify $\ln \left(\frac{\sqrt{x^{2}+1}}{x}\right)$.
59. The polynomial $x\left(x^{2}-16\right)\left(x^{2}+16\right)$ has how many real roots?
60. Consider $y=\ln x$. What is the range and domain? What is the x intercept? Discuss the behavior of the graph as $x \rightarrow \infty$ and as $x \rightarrow 0^{+}$
